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Extended Lagrangian Born-Oppenheimer molecular dynamics �A. M. N. Niklasson, Phys. Rev. Lett. 100,
123004 �2008�� has been generalized to the propagation of the electronic wave functions. The technique allows
highly efficient first principles molecular dynamics simulations using plane wave pseudopotential electronic
structure methods that are stable and energy conserving also under incomplete and approximate self-
consistency convergence. An implementation of the method within the plane-wave basis set is presented and
the accuracy and efficiency is demonstrated both for semiconductor and metallic materials.
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I. INTRODUCTION

As the available computational capacity for scientific
computing is growing, first principles Born-Oppenheimer
�BO� molecular dynamics �MD� is becoming an increasingly
important tool for studying a wide range of material prob-
lems. First principles BOMD delivers a very accurate ap-
proach to atomistic simulations without relying on a fitted
parameterization of the atomic interactions as in classical
molecular dynamics. Unfortunately, applications of BOMD
that are based on self-consistent field �SCF� calculations
such as density functional theory1–3 are often limited by a
very high computational cost or by fundamental shortcom-
ings such as unbalanced phase space trajectories, numerical
instabilities and a systematic long-term energy drift.4–6

Recently an extended Lagrangian BOMD �XL-BOMD�
was introduced that avoids some of the most serious prob-
lems of regular BOMD and enables computationally efficient
and stable simulations of energy conserving �microcanon-
cial� ensembles.6–9 In XL-BOMD, auxiliary electronic de-
grees of freedom are included, in addition to the nuclear
coordinates and velocities. In contrast to the popular ex-
tended Lagrangian Car-Parrinello molecular dynamics
methods,3,10–12 the nuclear forces are calculated at the ground
state BO potential energy surface and the total BO energy is
a constant of motion.

So far XL-BOMD has been limited to density matrix for-
mulations of the extended electronic degrees of freedom.
This excludes any practical implementation in widely used
plane-wave pseudopotential schemes, since it would lead to
unmanageable large density matrices. Because of the arbi-
trary phase of the electronic wave functions13–15 it is difficult
to use wave functions as the extended electronic degrees of
freedom in a stable time-reversible or geometric integration
of the equations of motion. Here we show how the electronic
wave functions can be included in XL-BOMD. Our formu-
lation allows a time-reversible integration of both the nuclear
and the electronic degrees of freedom and it provides a
highly efficient BOMD for plane-wave pseudopotential
methods that is stable and energy conserving also under in-

complete and approximate SCF convergence. The wave
function XL-BOMD method was implemented in the Vienna
Ab-initio Simulation Package �VASP� �Refs. 16–18� and its
accuracy and efficiency are demonstrated both for semicon-
ductor and metallic materials.

II. FIRST PRINCIPLE MOLECULAR DYNAMICS

A. Born-Oppenheimer molecular dynamics

First principle BOMD based on density functional theory
�DFT� is given by the Lagrangian,

LBO�R,Ṙ� =
1

2�
i

MiṘi
2 − UDFT�R;�sc� , �1�

where R= �Ri� are the nuclear coordinates and the dot de-
notes the time derivative. The potential UDFT�R ;�sc� is the
ground state energy, including ion-ion repulsions, for the
density given by the self consistent �sc� electronic wave
functions, �sc= ��nk

sc �. Here n and k denote the band and re-
ciprocal lattice vectors, respectively. The Euler-Lagrange
equations,

d

dt� �L

�Ṙi

	 −
�L
�Ri

= 0 �2�

give the equations of motion for the dynamical variables R�t�
and Ṙ�t�.

The high cost of finding the ground state SCF solution
�sc�t� is significantly reduced by using an initial guess that is
extrapolated from previous time steps4,5,19–22

�sc�t� = SCF
�
m=1

M

cm�sc�t − m�t�;R� . �3�

In the SCF optimization in Eq. �3� above we assume a full
optimization, which may include several iterative cycles
based on, for example, simple linear mixing, Broyden mix-
ing, or the direct inversion of the iterative subspace �DIIS�
method.23–26 However, since the SCF optimization in prac-
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tice never is complete, the extrapolation procedure in Eq. �3�
leads to an irreversible evolution of the ground state elec-
tronic wave functions. The nuclear forces are therefore cal-
culated with underlying electronic degrees of freedom that
behave unphysically. The irreversibility appears most strik-
ingly as a systematic long-term energy drift.4,5 By using ther-
mostats, e.g., an artificial interaction with an external heat
bath, these shortcomings of BOMD may not be noticed.
However, a thermostat requires an underlying dynamics that
is physically correct, and the problems are therefore never
removed. Only by improving the SCF convergence, which is
increasing the computational cost, is it possible to suppress
the energy drift, though the problem never fully disappears.

B. Wave function extended Lagrangian
Born-Oppenheimer MD

In our wave function XL-BOMD, proposed here, the dy-
namical variables of the BO Lagrangian are extended with a
set of auxiliary wave functions �= ��nk� evolving in har-
monic oscillators centered around the self-consistent ground
state wave functions �sc�t�,

LXBO�R,Ṙ,�,�̇� = LBO +
�

2 �
nk
� �̇nk2dr

−
��2

2 �
nk
� �nk

sc − �nk2dr . �4�

Here � is a fictitious electron mass parameter and � is a
frequency or curvature parameter for the harmonic poten-
tials. Applying the Euler-Lagrange equations to the extended
Lagrangian in Eq. �4� gives

MiR̈i = −
�UDFT

�Ri
−

��2

2

�

�Ri
�
nk
� �nk

sc − �nk2dr , �5�

��̈�t� = ��2��sc�t� − ��t�� . �6�

In the limit �→0 we get

MkR̈i = −
�UDFT�R;�sc�

�Ri
, �7�

�̈�t� = �2��sc�t� − ��t�� . �8�

Thus, in the limit of vanishing fictitious mass parameter, �,
we recover the regular BO equations of motion in Eq. �7�,
with the total BO energy as a constant of motion. Equation
�8� determines the dynamics of our auxiliary wave functions
��t�. Since � is set to zero, the only remaining undetermined
parameter is the frequency or curvature � of the extended
harmonic potentials. As will be shown below, � occurs in the
integration of Eq. �8� only as a dimensionless factor �t2�2

and therefore affects the dynamics in the same way as the
finite integration time step �t.

Since the auxiliary wave functions ��t� are dynamical
variables, they can be integrated by, for example, the time-
reversible Verlet algorithm.27 Moreover, since the auxiliary
wave functions evolve in a harmonic well centered around

the ground state solution, ��t� will stay close �sc�t�. By
maximizing the curvature �2 of the harmonic extensions we
can minimize their separation. Using the auxiliary dynamical
variables ��t� in the initial guess to the SCF optimization,

�sc�t� = SCF���t�;R� , �9�

therefore provides an efficient SCF procedure that can be
used within a time-reversible framework. The nuclear forces
will then be calculated with an underlying electronic degrees
of freedom with the correct physical time-reversal symmetry.
This is in contrast to conventional BOMD, where the SCF
optimization is given from an irreversible propagation of the
underlying electronic degrees of freedom as in Eq. �3�.
Hence the system will be propagated reversibly and should
not suffer from any systematic drift in the total energy and
phase space.

C. Integration

Both the nuclear and electronic degrees of freedom in
Eqs. �7� and �8� can be integrated with the Verlet algorithm,
or with other geometric integration schemes that preserve
properties of the exact underlying flow of the dynamics.7,9,28

The Verlet integration of Eq. �8�, including a weak external
dissipative electronic force that removes accumulation of nu-
merical noise,8 has the following form:

��t + �t� = 2��t� − ��t − �t� + �t2�2��sc�t� − ��t��

+ 	�
m=0

K

cm��t − m�t� . �10�

where 	 determines the magnitude of the dissipative force
term with the cm coefficients given in Ref. 8 and Table I. The
additional electronic force introduces dissipation of numeri-
cal noise that would accumulate in a perfectly reversible and
lossless propagation. The dissipation breaks time reversibil-
ity, but only to a high order in �t.8,29 In this way numerical
errors can be removed without causing any significant drift
in the total energy.

D. Subspace alignment

The electronic ground state wave functions are unique
except with respect to their phase. This presents a problem
for the accuracy and stability of the Verlet integration above.
The wave functions need to be aligned to a common orien-
tation to allow an accurate and stable integration. Aligning
the wave functions backward in time as in some previous
integration schemes for regular BOMD �Refs. 13–15 and 30�
is not possible, since it would break the time-reversal sym-
metry. We solve this problem by including a unitary rotation
transform U in the SCF optimization, which rotates �sc�t�
such that the deviation from ��t� is minimized in the Frobe-
nius norm, i.e.,

U = arg min
U�

��sc�t�U� − ��t��F. �11�

U can be calculated from U= �OO†�−1/2O where O
= ��sc �� is the overlap matrix between �sc�t� and
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��t�.13,14,30 Since the rotation is only applied to �sc�t� and
not to previous auxiliary wave functions, the reversibility is
not affected. The redefined Verlet integration is

��t + �t� = 2��t� − ��t − �t� + �t2�2��sc�t�U − ��t��

+ 	�
m=0

K

cm��t − m�t� . �12�

Note that good initial values for the auxiliary variables are
important. If a poor initial guess are used the weak dissipa-
tion will eventually relax the auxiliary dynamics to a similar
dynamics, but it would take time, and meanwhile we would
have bad initial guesses for the SCF optimization. In our
implementation the initial values of the auxiliary variables,
are set to the SCF optimized ground states, i.e., as initial
conditions for ��t� we chose to set ��t���sc�t� for the first
K+1 time steps, where we perform phase alignments to the
first optimized wave functions �sc�t= t0�. It may be prefer-
able to run with stronger convergence criteria during the ini-
tial steps to get a good starting guess. In the first K+1 initial
steps we therefore chose to have a higher degree of SCF
convergence than in later time steps.

III. STABILITY AND NOISE DISSIPATION

By aligning the phase in the SCF optimization, the stabil-
ity of the Verlet integration in Eq. �12�, under the condition
of an approximate and incomplete SCF convergence, can be
analyzed from the roots 
 of the characteristic equation of
the homogeneous �steady state� part of the Verlet scheme, in
the same way as for the density matrix.7,8 Assume a linear-
ization of an approximate SCF optimization, Eq. �9�, around
the hypothetical exact solution ��, where

�sc = SCF��� � �� + �SCF�� − ��� . �13�

Let � be the largest eigenvalue of the SCF response kernel
�SCF. Inserting Eq. �13� in the Verlet scheme, Eq. �12�, with
�SCF replaced by �, for the homogeneous steady state solu-
tion for which ���0, gives the characteristic equation


n+1 = 2
n − 
n−1 + �� − 1�
n + 	�
m=0

K

cm
n−m. �14�

Here the dimensionless constant =�t2�2, and �� �−1,1� is
proportional to the amount of convergence in the SCF opti-
mization. As long as the initial guess ��t� is brought closer
to the ground state solution by the SCF procedure, � will be
smaller than 1. If the characteristic roots have a magnitude


max�1, the integration is unstable �even if the accuracy is
good�, whereas it is stable if 
max�1 �even if the optimi-
zation is approximate�. For 
max�1 the accumulation of
numerical noise will be suppressed through dissipation. By
optimizing =�t2�2 under the condition of stability under
incomplete SCF convergence with �� �−1,1�, the curvature
�2 of the extended harmonic wells will be maximized, which
keeps the auxiliary wave functions ��t� as close as possible
to the ground state solutions �sc�t�.9 This optimization is
performed under the additional condition of maximum dissi-
pation. Our optimized values of 	 and  and the cm coeffi-
cients can be found in Ref. 8 and a few examples are given in
Table I. Three different examples of dissipation as a function
of SCF convergence as measured by 
max and � are shown
in Fig. 1.

IV. PLANE WAVE PSEUDOPOTENTIAL
IMPLEMENTATION (VASP)

Our wave function XL-BOMD method has been imple-
mented in the Vienna Ab-initio Simulation Package �VASP�
�Refs. 8–16� and the projector augmented wave method.31,32

These particular methods not only require the integration of
the wave functions, but also the electron density and the
Kohn-Sham eigenvalues that are used in the SCF optimiza-

TABLE I. Coefficients for the Verlet integration scheme with the external dissipative force term in Eq.
�12�. The coefficients are derived in Ref. 8, which contains a more complete set of coefficients.

K �t2�2 	�10−3 c0 c1 c2 c3 c4 c5 c6 c7

0 2.00 0

3 1.69 150 −2 3 0 −1

5 1.82 18 −6 14 −8 −3 4 −1

7 1.86 1.6 −36 99 −88 11 32 −25 8 −1
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FIG. 1. �Color online� Stability and dissipation for 2nd order
regular BOMD �Refs. 13 and 14� and XL-BOMD, Eq. �12�. The
stability region of the regular BOMD is limited to ��
�−0.14,0.50� hence demanding a higher degree of SCF conver-
gence, even if the accuracy in each step is high. In contrast, XL-
BOMD is stable in the entire region of SCF convergence, ��
�−1,1�.
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tion. In this work these additional quantities has been be
added to the Lagrangian as extended dynamical variables
evolving in harmonic oscillators centered around their own
optimized values in the same way as the auxiliary wave
functions. For example, an auxiliary density, ��r�, can be
included as a dynamical variable through the extended La-
grangian,

LXBO��R,Ṙ,�,�̇,�, �̇� = LXBO�R,Ṙ,�,�̇� +
1

2
�� �̇�r�2dr

−
1

2
��2� �nsc�r� − ��r��2dr . �15�

Here ��r� follows the SCF optimized ground state density
nsc�r�. Also for the auxiliary density and other extended vari-
ables the initial values are set equal to the optimized ground
state values for the first K+1 steps.

V. APPLICATIONS

To demonstrate the accuracy and efficiency of the wave
function XL-BOMD scheme we simulate two different
model systems with qualitatively different bonding, metallic
sodium and semiconducting silicon.

A. Sodium

A unit cell of 16 bcc Na atoms was simulated for a total of
10 000 steps with an ionic temperature fluctuating around
500 K with a time step of 4 fs. The regular BOMD integra-
tion scheme was based on a 2nd-order extrapolation of the
wave functions from three previous time steps13,14 and the
XL-BOMD scheme used K=5 for the dissipation.8 Both
methods used the velocity Verlet integration for the nuclear
degrees of freedom and were run with the same SCF energy
convergence criterion, �E=5 �eV, resulting in about 2 SCF
iterations per time step for both methods. Each SCF cycle

includes one single construction and solution of the Hamil-
tonian eigenvalue problem. For matrix diagonalization we
chose the iterative RMM-DIIS26,33 method. The Davidson34

method was also used in several tests, but this did not change
the behavior. As SCF convergence accelerating algorithm we
used the Pulay scheme.26 A plane-wave energy cutoff of 102
eV and a grid of 64 k points was used and the exchange-
correlation energy was given by the local density approxima-
tion �LDA�.35

The fluctuations in the total energy can be seen in Fig. 2.
For regular BOMD we see a small but systematic drift in the
total energy of the order of 0.25 meV/ps. In comparison,
XL-BOMD shows no drift and the magnitude of the energy
fluctuations due to the local truncation errors, occurring be-
cause of the finite time steps and the approximate SCF con-
vergence, is the same. In fact, we have found that XL-
BOMD is stable even when only 1 SCF cycle per time step is
used. This would be a general statement if the SCF proce-
dure systematically improves the convergence in a single
step.7 Unfortunately, this is not always the case.

B. Silicon

Next a Si system with 8 atoms per unit cell in a diamond
structure was simulated for a total of 10 000 steps at an ionic
temperature fluctuating around 500 K with a time step of 1
fs. The SCF convergence threshold �E was set to 5 �eV
with a plane wave cutoff of 246 eV and a grid of 64 k points
was used. Otherwise the same settings as for sodium were
applied. In Fig. 3 the fluctuations in the total energy �E are
plotted. Also in this case, we find that XL-BOMD restores
balance to the unphysical trajectories of regular BOMD that
shows a significant systematic drift in the total energy.

VI. DISCUSSION AND SUMMARY

In a direct comparison using the same time step and con-
vergence criteria, we find that XL-BOMD and regular
BOMD have the same local truncation error, as measured by
the local amplitude of the oscillations in the total energy,
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�
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�m

eV
�

XL�BOMD
BOMD

FIG. 2. �Color online� Fluctuations in the total energy, �E, as a
function of time for a Na bcc crystal with 16 atoms in the unit cell
and an integration time step of 4 fs. The same SCF convergence
criterion was used, �E=5 �eV, requiring about 2 SCF iterations
per time step for both methods. The regular BOMD simulation
shows significant systematic energy drift.
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FIG. 3. �Color online� Fluctuations in the total energy, �E ver-
sus time for 8 Si atoms simulated using XL-BOMD and regular
BOMD. BOMD shows a systematic energy drift.
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both for the metallic and the nonmetallic system. However,
the unphysical behavior of regular BOMD, which has a sys-
tematic long-term energy drift, is removed in XL-BOMD.
Only by significantly increasing the computational cost of
regular BOMD with a higher degree of SCF convergence, or
shorter time steps, is it possible to reduce the long-term en-
ergy drift. Table II summarizes the results of a comparison
between XL-BOMD and regular BOMD for the Na simula-
tion. There were no noticeable difference in computational
cost for each SCF iteration between regular BOMD and XL-
BOMD, i.e., the number of iterations for the RMM-DIIS �or
the Davidson� diagonalization scheme remains practically
identical. Thus the number of SCF cycles is a direct measure
of the wall time for the simulations. The results clearly show
that even though the energy drift can be substantially re-
duced in conventional BOMD, a large performance penalty

has to be paid. XL-BOMD requires in general more memory,
1.5 to 2.5 times the temporary storage used in regular
BOMD depending on the dissipation scheme used. However,
for most practical situations wall time is the limiting factor
when running first principal BOMD, not memory usage. XL-
BOMD therefore combines a more correct physical descrip-
tion with a lower computational cost.

In many ways, XL-BOMD integrates some of the best
features of regular BOMD and Car-Parrinello molecular dy-
namics, i.e., the parameter-free rigor of BOMD and an effi-
cient extended Lagrangian framework as in Car-Parrinello
molecular dynamics, where both nuclear and electronic de-
grees of freedom are included as dynamical variables.

In summary, we have proposed and demonstrated a wave
function XL-BOMD scheme that allows highly efficient first
principles molecular dynamics simulations using plane wave
pseudopotential electronic structure methods that are stable
and energy conserving also under incomplete and approxi-
mate self-consistency convergence. This extends the capabil-
ity and accuracy of modern molecular dynamics simulations.
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